

# Breaking the Circuit-Size Barrier in Secret Sharing



Tianren Liu, Vinod Vaikuntanathan MIT

Poster and slides on liutianren.com

### General Secret Sharing

A secret sharing scheme over n parties is a randomized algorithm that distributes a one-bit secret among n shares

Sharing Algo: 
$$s \in \{0, 1\} \mapsto (share_1, \dots, share_n)$$
.

The secret sharing scheme is associated to a monotone boolean function  $F: \{0,1\}^n \to \{0,1\}$ , such that for any subset of parties  $T \subseteq [n]$ ,

$$F(T) = 1 \implies s \text{ can be recovered from } \{share_i\}_{i \in T},$$

$$F(T) = 0 \implies s \text{ is independent from } \{share_i\}_{i \in T}.$$

One of the major long-standing questions in information-theoretic cryptography is to minimize the (total) size of the shares in a secret sharing scheme for arbitrary monotone functions F. [Ito-Saito-Nishizeki'89]

#### Previous Works

General Secret Sharing

Linear Secret Sharing\*

 $2^n$  (naïve solution)

## Upper Bounds:

 $O(\text{monotone formula size}) \le \frac{2^n}{\text{poly}(n)}$ 

[Benaloh-Leichter'88] the same

 $\forall F$ , the share size is no more than

 $O(\text{monotone span program size}) \le \frac{2^n}{\text{poly}(n)}$ 

[Karchmer-Wigderson'93]

#### Lower Bounds:

$$\frac{n^2}{\log n}$$
 [Csirmaz'97]

$$\frac{2^{n/2}}{\operatorname{poly}(n)}$$

∃F, the share size is no less than

### Formula-Based Secret Sharing and its Bottleneck

- Monotone function F is computed by a monotone formula
- Generate a tag for each wire
- -Output wire: the secret s
- -AND gate: additively share its output wire tag
- -OR gate: copy its output wire tag
- The *i*-th party's share: all tags of input wire  $x_i$
- Total share size  $\approx$  formula size of  $F \leq 2^n/poly(n)$ [Benaloh-Leichter'88]

## Representation size barrier:

formula size  $\times \log(\# \text{ base gates}) \ge \log(\# \text{ monotone functions}) = \frac{2^n}{\text{poly}(n)}$ 

#### Proof Outline

Every monotone function has secret sharing scheme with share size  $2^{0.994n}$ , which is the corollary of the following two theorems.

#### [Liu-Vaikuntanathan-Wee'18]

Every **slice functions** — function F s.t.

$$||x|| > n/2 \implies \mathsf{F}(x) = 1$$
 and

$$||x|| < n/2 \implies \mathsf{F}(x) = 0,$$

has a secret sharing scheme /w share size  $2^{\tilde{O}(\sqrt{n})}$ .

#### [This work]

Every monotone function can be computed by a monotone formula s.t.

- Formula size:  $2^{0.994n}$  Constant depth
- Base gates: AND, OR, slice functions

#### Our Results

General Secret Sharing Linear Secret Sharing\*

### New Upper Bounds:

 $\forall F$ , the share size is no more than

90.994n

0.999n

#### sults Open Problems

- Every monotone function is computed by a monotone formula of size  $2^{o(n)}$  using slice functions as gates? (It implies every monotone function has a secret sharing scheme with  $2^{o(n)}$  share size.)
- Does amortization help improve information ratio?

Secret Sharing for all Functions

[This work]

Secret Sharing for Slice Functions <= Multi-party Conditional Disclosure of Secret

[LVW'18]

= 2-party Conditional Disclosure of Secret

[LVW'17]

2-server PIR [Yek'08,Efr'09,DG'15]